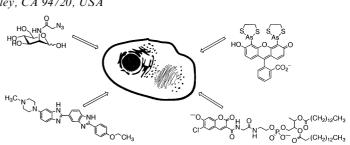
Chemical Approaches to the Investigation of Cellular Systems

Bioorg. Med. Chem. 10 (2002) 829


Brian N. Cook, a Carolyn R. Bertozzia, b,c

^aDepartment of Chemistry, University of California, Berkeley, CA 94720, USA

^bDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA

^cHoward Hughes Medical Institute, University of

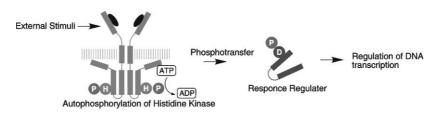
California, Berkeley, CA 94720, USA

DNA Analogues: From Supramolecular Principles to Biological Properties

Bioorg. Med. Chem. 10 (2002) 841

Christian J. Leumann

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland


A review on structure–activity relationships for a series of carbohydrate modified oligonucleotide analogues.

Histidine Kinases as Targets for New Antimicrobial Agents

Bioorg. Med. Chem. 10 (2002) 855

Masayuki Matsushita, Kim D. Janda

The Scripps Research Institute and the Skaggs Institute for Chemical Biology, Department of Chemistry BCC-582, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA

Chloropyrimidines as a New Class of Antimicrobial Agents

Bioorg. Med. Chem. 10 (2002) 869

Nidhi Agarwal, Pratibha Srivastava, Sandeep K. Raghuwanshi, b D.N. Upadhyay, Sudhir Sinha, a P.K. Shukla and Vishnu Ji Ram

^aMembrane Biology, Central Drug Research Institute, Lucknow 226001, India

^bMedical Mycology and Medicinal Chemistry, Central Drug Research Institute, Lucknow 226001, India

Synthesis of Mycothiol, 1D-1-*O*-(2-[*N*-acetyl-L-cysteinyl]amino-

Bioorg. Med. Chem. 10 (2002) 875

2-deoxy- α -D-glucopyranosyl)-myo-inositol, Principal Low Molecular Mass Thiol in the Actinomycetes

M. Anwar Jardine,^a Hendrik S.C. Spies,^b Comfort M. Nkambule,^c David W. Gammon^c and Daniel J. Steenkamp^{a,*}

^aDepartment of Chemical Pathology, University of Cape Town Medical School, Observatory 7925, South Africa

bNMR Laboratory, University of Stellenbosch, Matieland 7602, South Africa

^cDepartment of Chemistry, University of Cape Town, Rondebosch, South Africa

The Enantiomers of Carbocyclic 5'-Norguanosine: Activity Towards Epstein–Barr Virus

Bioorg. Med. Chem. 10 (2002) 883

Vasanthakumar Rajappan,^a Stewart W. Schneller,^{a,*} Stephanie L. Williams^b and Earl R. Kern^b

^aDepartment of Chemistry, Auburn University, Auburn, AL 36849-5312, USA

^bDepartment of Pediatrics, Division of Clinical Virology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA O

Synthesis, Characterization and Antitumor Studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) Complexes of N-Salicyloyl-N'-o-hydroxythiobenzhydrazide

Bioorg. Med. Chem. 10 (2002) 887

Anuraag Shrivastav, a Nand K. Singha and Sukh Mahendra Singhb

^aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India ^bSchool of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi 221005, India

A new ligand N-salicyloyl-N'-o-hydroxythiobenzhydrazide (H_2Sotbh) and its Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes were prepared and characterized by analytical and physicochemical studies. The therapeutic implication of H_2Sotbh and its metal complexes in tumor regression and tumor growth associated immuno-supression were studied.

M=Cu, Zn or Co; Ar=C₆H₄-2-OH

Molecular Modeling of Protein Tyrosine Phosphatase 1B (PTP 1B) Inhibitors

Bioorg. Med. Chem. 10 (2002) 897

V. Sreenivasa Murthy and Vithal M. Kulkarni

Pharmaceutical Division, Department of Chemical Technology, University of Mumbai, Matunga, Mumbai 400 019, India

Binding modes of aryloxymethylphosphonates and monoanionic biosteres of phosphate group from benzylic, -diffluoro phosphate and its biosteres as PTP 1B inhibitors were identified by docking, molecular dynamics and solvent accessible surface area calculations. The findings are in consistent with the biological activity of the inhibitors.

$$Ar - O - CH_2 - P - Q_a^{\Theta}$$

$$O_b$$

Study on the Synthesis and PKA-I Binding Activities of 5-Alkynyl Tubercidin Analogues

Liangren Zhang, Yunlong Zhang, Xianghui Li and Lihe Zhang

National Research Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China

5-Alkynyl tubercidin analogues were synthesized and their biological behavior was evaluated.

Syntheses and Kinetic Evaluation of Racemic and Optically

Bioorg. Med. Chem. 10 (2002) 913

Active 2-Benzyl-2-methyl-3,4-epoxybutanoic Acids as Irreversible Inactivators for Carboxypeptidase A

Mijoon Lee and Dong H. Kim

Division of Molecular and Life Sciences and Center for Integrated Molecular Systems, Pohang University of Science and Technology, San 31 Hyojadong, Pohang 790–784, Republic of Korea

Studies on *n*-Octyl-5-(α-D-arabinofuranosyl)-β-D-galactofuranosides for Mycobacterial Glycosyltransferase Activity

Bioorg. Med. Chem. 10 (2002) 923

Ashish K. Pathak, a Vibha Pathak, a William J. Suling, Sudagar S. Gurcha, Caroline B. Morehouse, Gurdyal S. Besra, Joseph A. Maddry and Robert C. Reynolds

^aDepartment of Organic Chemistry, Southern Research Institute, PO Box 55305, Birmingham, AL 35255, USA

^bDepartment of Biochemistry, Southern Research Institute, PO Box 55305, Birmingham, AL 35255, USA

^cThe School of Microbiological, Immunological & Virological Sciences,

The University of Newcastle upon Tyne, The Medical School,

Framlington Place, Newcastle upon Tyne NE2 4HH, UK

Novel Steroidal Vinyl Fluorides as Inhibitors of Steroid $C_{17(20)}$ Lyase

Bioorg. Med. Chem. 10 (2002) 929

Joseph P. Burkhart, Philip M. Weintraub, Cynthia A. Gates, Robert J. Resvick, Roy J. Vaz, Dirk Friedrich, Michael R. Angelastro, Philippe Bey and Norton P. Peet

Aventis Pharmaceuticals, Route 202-206, Bridgewater, New Jersey 08807-0800, USA

20-Fluoro-17(20)-pregnenolone derivatives were designed as enol mimics of pregnenolone. All of the targeted, novel fluoroolefins were potent inhibitors of C₁₇₍₂₀₎ lyase.

Bioorg. Med. Chem. 10 (2002) 941

Antioxidant Potential of Natural and Synthesised Polyprenylated Hydroquinones

Leto-A. Tziveleka, Angeliki P. Kourounakis, Panos N. Kourounakis, Vassilios Roussis and Constantinos Vagias Angeliki P. Kourounakis, Panos N. Kourounakis, Vassilios Roussis and Constantinos Vagias Angeliki P. Kourounakis, Panos N. Kourounakis, Vassilios Roussis Angeliki P. Kourounakis, Panos N. Kourounakis,

^aSchool of Pharmacy, Department of Pharmacognosy, University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece ^bSchool of Pharmacy, Department of Medicinal Chemistry, Aristotles University of Thessaloniki, GR-540 06 Thessaloniki, Greece

Metabolites 2-octaprenyl-1,4-hydroquinone (1) and 2-(24-hydroxy)-octaprenyl-1,4-hydroquinone (2), isolated from the sponge Ircinia spinosula, along with eight synthetic derivatives, were evaluated for their antioxidant capacity. The antioxidant potential of the compounds was evaluated in vitro by their ability: (1) to interact with the stable free radical DPPH and (2) to inhibit the peroxidation, induced by the Fe++/ascorbate system, of heat inactivated hepatic microsomal membrane lipids.

B-3000 Leuven, Belgium

	R
1	Me
2	CH ₂ OH

Influence of 2-Substituent on the Activity of Imidazo[1,2-a] **Pyridine Derivatives Against Human Cytomegalovirus**

Sylvie Mavel, a Jean-Louis Renou, a Christophe Galtier, Hassan Allouchi, Robert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, Christophe Galtier, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, Graciella Andrei, Christophe Galtier, a Hassan Allouchi, Bobert Snoeck, Graciella Andrei, Christophe Galtier, Graciella Andrei, Gra Erik De Clercq,^c Jan Balzarini^c and Alain Gueiffier^a

ÓН

^aLaboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 31 Av. Monge, 37200 Tours, France ^bLaboratoire de Chimie Physique, Faculté de Pharmacie, 31 Av. Monge, 37200 Tours, France ^cRega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10,

Synthesis and antiviral activity against human cytomegalovirus of new 2-subsituted imidazo[1,2-a] pyridine were described.

$$H_3C$$
 N
 R
 S
 R^1

R = alkyl, aryl R^1 = phenyl, benzyl

Novel Lipase-Catalysed Highly Selective Acetylation Studies on D-Arabino- and D-Threo-polyhydroxyalkyltriazoles

Bioorg. Med. Chem. 10 (2002) 947

Ashok K. Prasad,^a Himanshu,^a Anupam Bhattacharya,^a Carl E. Olsen^b and Virinder S. Parmar^a

^aDepartment of Chemistry, University of Delhi, Delhi-110 007, India

^bChemistry Department, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, Frederiksberg C, DK-1871 Copenhagen, Denmark

Candida antarctica lipase and porcine pancreatic lipase have exhibited exclusive selectivity for the acetylation of primary hydroxyl group over secondary hydroxyl group(s) in D-arabino- and D-threo-polyhydroxyalkyltriazoles.

$$\begin{array}{c|c} N - C_6 H_5 & CAL, \\ N - C_6 H_5 & Vinyl \\ CHOH)_n & accetate & CH_2OAc \\ \hline \\ 05-98\% & vields \\ \end{array}$$

Cyclic Dibenzoylhydrazines Reproducing the Conformation of **Ecdysone Agonists, RH-5849**

Bioorg. Med. Chem. 10 (2002) 953

Tetsuya Toya, a Kentaro Yamaguchi and Yasuyuki Endo^c

^aResearch & Development Laboratories, Nippon Kayaku Co., Ltd., 225-1 Koshikiya, Ageo, Saitama 362-0064, Japan

^bChemical Analysis Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Synthesis and conformational analysis of cyclic hydrazine derivatives of ecdysone agonist, RH5849 were investigated six-membered cyclic hydrazine bearing two benzoyl groups exists as three conformational states in solution, and the major unsymmetrical conformer is similar to that of RH-5849 by ¹H NMR experiment and X-ray analysis.

Synthesis and Antiviral Activity Evaluation of Novel 2-Phenyl-4-

Bioorg. Med. Chem. 10 (2002) 963

(D-arabino-4'-cycloaminobutyl)triazoles: Acyclonucleosides Containing Unnatural Bases

Himanshu, a Rahul Tyagi, Carl E. Olsen, William Errington, Virinder S. Parmara and Ashok K. Prasada

^aDepartment of Chemistry, University of Delhi, Delhi-110 007, India

^bChemistry Department, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, Frederiksberg C, DK-1871 Copenhagen, Denmark

^cDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, UK

Five 2-phenyl-4-(D-*arabino*-4'-cycloamino-3'-hydroxy-*O*-1',2'-*iso*propylidenebutyl)-2*H*-1,2,3-triazoles, acyclonucleosides containing unnatural bases have been synthesised by opening of the epoxide ring of 2-phenyl-4-(D-*arabino*-3',4'-epoxy-*O*-1',2'-*iso*propylidenebutyl)-2*H*-1,2,3-triazole with the corresponding cyclic amine and subjected to antiviral activity evaluation against HIV-1_{IIIB} and HIV-1_{RF} viruses.

Dihydroxybergamottin Caproate as a Potent and Stable CYP3A4 Inhibitor

Bioorg. Med. Chem. 10 (2002) 969

Tomihisa Ohta, Minoru Nagahashi, Shinzo Hosoi and Sachiko Tsukamoto

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920-0934, Japan

Semi-synthetic dihydroxybergamottin caproate showed potent CYP3A4 inhibition with IC₅₀ value of 0.07 μM.

Design and Synthesis of a Selective EP4-Receptor Agonist. Part

Bioorg. Med. Chem. 10 (2002) 975

1: Discovery of 3,7-DithiaPGE₁ Derivatives and Identification of Their ω Chains

Toru Maruyama, Masaki Asada, Tai Shiraishi, Hiromu Egashira, Hideyuki Yoshida, Takayuki Maruyama, Shuichi Ohuchida, Hisao Nakai, Kigen Kondo and Masaaki Toda

Minase Research Institute, Ono Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka 618-8585, Japan

3,7-Dithia PGE_1 analogues ${\bf 4a}$ and ${\bf 4p}$ were discovered as a new chemical lead for development of selective EP4-receptor agonists.

$$S CO_2H$$
HÖ OH

4a R = n-C₅H₁₁ **4p** R = CH₂C₆H₅

Design and Synthesis of a Selective EP4-Receptor Agonist. Part 2: 3,7-DithiaPGE₁ Derivatives with High Selectivity

Bioorg. Med. Chem. 10 (2002) 989

Toru Maruyama, Masaki Asada, Tai Shiraishi, Akiharu Ishida, Hideyuki Yoshida, Takayuki Maruyama, Shuichi Ohuchida, Hisao Nakai, Kigen Kondo and Masaaki Toda

Minase Research Institute, Ono Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka 618-8585, Japan

3,7-DithiaPGE $_1$ analogues 13- $_{6q}$ and 18- $_{14e}$ were discovered to be highly selective EP4-receptor agonists.

13-6q X = CH₂OCH₃, Y = H **18-**14e X = CH₃, Y = OH

Guanidinium and Aminoimidazolinium Derivatives of N-(4-Piperidyl) $\[\]$ Propanamides as Potential Ligands for μ Opioid and I_2 -imidazoline Receptors: Synthesis and Pharmacological Screening

Ana Montero,^a Pilar Goya,^a Nadine Jagerovic,^a Luis F. Callado,^b J. Javier Meana,^b Rocío Girón,^c Carlos Goicoechea^c and Mª Isabel Martín^c

^aInstituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain

^bDepartamento de Farmacología, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Leioa, E-48940 Bizkaia, Spain

^cFacultad de Ciencias de la Salud, Area de Farmacología, Universidad Rey Juan Carlos, Av. de Atenas s/n, E-28922 Madrid, Spain

The synthesis of N-(1-phenethyl-4-piperidyl) propanamides incorporating guanidinium and aminoimidazolinium groups are reported. Two of them showed high affinity for μ opioid receptors and moderate analysis properties in vivo. Low affinity for the I_2 -imidazoline receptor was shown.

Bioorg. Med. Chem. 10 (2002) 1019

Molecular Structure and Stereoelectronic Properties of Herbicide Sulphonylureas

R. Galeazzi, a C. Marucchini, b M. Orena and C. Zadra b

^aDipartimento di Scienze dei Materiali e della Terra, Università di Ancona, Via Brecce Bianche, I-60131 Ancona, Italy ^bDipartimento Agroambientale e della Produzione Vegetale, Università di Perugia, Borgo XX Giugno 72, I-06121 Perugia, Italy

Electronic properties and quantum chemical descriptors for a number of sulphonylureas were determined, in order to correlate them with their activity as inhibitors of ALS synthase.

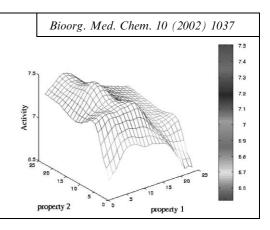
Effect of Modification of 6-[(Aminoalkyl)amino]-7*H*-benzo[*e*]perimidin-7-ones on Their Cytotoxic Activity Toward Sensitive and Multidrug Resistant Tumor Cell Lines. Synthesis and Biological Evaluation

Maria Dzieduszycka, a Sante Martelli, Małgorzata Arciemiuk, Maria M. Bontemps-Gracz, Agnieszka Kupieca and Edward Borowskia

^aDepartment of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, 80-952 Gdańsk, Poland

^bDepartment of Chemistry, University of Camerino, 62033 Camerino, Italy

Derivatives of 6-[(aminoalkyl)amino]-7*H*-benzo[*e*]-perimidin-7-ones were synthesized and evaluated for their cytotoxic activity toward murine and human leukemia sensitive and resistant (MDR and MRP) cell lines.



Application of Non-Parametric Regression to Quantitative Structure—Activity Relationships

Jonathan D. Hirst,^a T. John McNeany,^a Trevor Howe^b and Lewis Whitehead^b

^aSchool of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK

^bNovartis Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, UK

Synthesis of a Novel Class of Non-Peptide NK-2 Receptor Ligand, Derived from 1-Phenyl-3-pyrrol-1-ylindan-2-carboxamides

Jean Guillon, a Patrick Dallemagne, b Jean-Michel Léger, a Jana Sopkova, b Philippe R. Bovy, Christian Jarrya and Sylvain Rault^b

^aEA 2962—Pharmacochimie, UFR des Sciences Pharmaceutiques, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

^bCentre d'Etudes et de Recherche sur le Médicament de Normandie, UFR des Sciences Pharmaceutiques, Université de Caen, 1, rue Vaubénard, 14032 Caen Cedex, France

°Synthélabo, 10, rue des Carrières, 92500 Rueil-Malmaison, France

3,5-Dibenzoyl-1,4-dihydropyridines: Synthesis and MDR **Reversal in Tumor Cells**

Masami Kawase,^a Anamik Shah,^b Harsukh Gaveriya,^b Noboru Motohashi,^c Hiroshi Sakagami,^d Andreas Vargae and Joseph Molnárf

^aFaculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan

^bDepartment of Chemistry, Saurashtra University, Rajkot-360 005, India

^cMeiji Pharmaceutical University, Tokyo 204-8588, Japan

^dDepartment of Dental Pharmacology, Meikai University School of Dentistry, Saitama 350-0283, Japan

^eDepartment of Molecular Parasitology, Humboldt University, Berlin, Germany

^fFaculty of Medicine, Institute of Microbiology, Albert Szent-Györgyi Medical University, Szeged, Hungary

COPh

Bioorg. Med. Chem. 10 (2002) 1057

Bioorg. Med. Chem. 10 (2002) 1051

Studies on the Immuno-Modulating and Antitumor Activities of Ganoderma lucidum (Reishi) Polysaccharides: Functional and Proteomic Analyses of a Fucose-**Containing Glycoprotein Fraction Responsible for the Activities**

Yuan-Yuan Wang,^a Kay-Hooi Khoo,^b Shui-Tein Chen,^b Chun-Cheng Lin,^a Chi-Huey Wong^a and Chun-Hung Lina,b

^aLaboratory of Bioorganic Chemistry, Institute of Chemistry, Academia Sinica, Taipei, Taiwan

^bInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan

Fucopeptide

Formation of a Fairly Stable Diazoate Intermediate of 5-Methyl-2'-

Bioorg. Med. Chem. 10 (2002) 1063

deoxycytidine by HNO₂ and NO, and Its Implication to a Novel Mutation Mechanism in CpG Site

Toshinori Suzuki,^a Masaki Yamada,^a Takanori Nakamura,^b Hiroshi Ide,^c Kenji Kanaori,^b Kunihiko Tajima,^b Takashi Moriia and Keisuke Makinoa

^aInstitute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan

^bDepartment of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

dR = 2'-deoxyribose

Synthesis of Novel Polyphenols Consisted of Ferulic and Gallic Acids,

Bioorg. Med. Chem. 10 (2002) 1069

and Their Inhibitory Effects on Phorbol Ester-Induced Epstein-Barr Virus Activation and Superoxide Generation

Eisaku Nomura,^a Asao Hosoda,^a Hideko Morishita,^b Akira Murakami,^c Koichi Koshimizu,^c Hajime Ohigashi^d and Hisaji Taniguchi^a

^aIndustrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama 649-6261, Japan

^bFaculty of Education, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan

^cFaculty of Biology-Oriented Science and Technology, Kinki University, Iwade-Uchita, Wakayama 649-6493, Japan ^dDivision of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

The condensation of the two natural occurring molecules and investigations of inhibitory effects of the conjugates on TPA-induced EBV activation and superoxide generation in vitro are described.

$$R_1O$$
 R_1O
 R_1O
 R_1O
 R_1O
 $R_1 = Ac, H$
 $R_2 = Alkyl$

Synthesis and Aldose Reductase Inhibitory Activity of 5-Arylidene-2,4-thiazolidinediones

Bioorg. Med. Chem. 10 (2002) 1077

G. Bruno, a L. Costantino, b C. Curinga, c R. Maccari, F. Monforte, F. Nicolò, a R. Ottanà c and M.G. Vigorita c

^aDipartimento Ch. Inorg., Chim. Anal. e Ch.-Fis, Facoltà Scienze MMFFNN, Università di Messina, Salita Sperone 31, 98166 Messina, Italy

^bDipartimento Sc. Farmaceutiche, Facoltà Farmacia, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy

^cDipartimento Farmaco-chimico, Facoltà Farmacia, Università di Messina, Vl. SS. Annunziata, 98168 Messina, Italy

Several (*Z*)-5-arylidene-2,4-thiazolidinediones (**2–4**) were synthesized and tested as aldose reductase inhibitors (ARIs) and most of them exerted appreciable inhibitory activity.

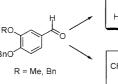
S H

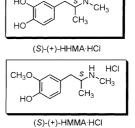
2 - 4

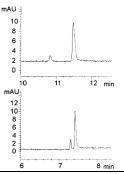
Synthesis and Capillary Electrophoretic Analysis of

Bioorg. Med. Chem. 10 (2002) 1085

Bioorg. Med. Chem. 10 (2002) 1093


Enantiomerically Enriched Reference Standards of MDMA and its Main Metabolites Nieves Pizarro, a Rafael de la Torre, a Magí Farré, a Jordi Segura, a


Amadeu Llebaria^b and Jesús Joglar^b


^aPharmacology Research Unit, Institut Municipal

^aPharmacology Research Unit, Institut Municipal d'Investigació Mèdica (IMIM), Doctor Aiguader 80, E-08003 Barcelona, Spain b Dangytmont of Riological Organic Chemistry

^bDepartment of Biological Organic Chemistry, IIQAB-CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain

Development of a Highly Selective EP2-Receptor Agonist. Part 1: Identification of 16-hydroxy-17,17-trimethylene PGE₂ Derivatives

Kousuke Tani, Atsushi Naganawa, Akiharu Ishida, Kenji Sagawa, Hiroyuki Harada, Mikio Ogawa, Takayuki Maruyama, Shuichi Ohuchida, Hisao Nakai, Kigen Kondo and Masaaki Toda 9

Minase Research Institute, Ono Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka 618-8585, Japan

Two series of prostaglandin analogues 4a,b,e,f,h and 6a,b,e,f,h possessing

15-hydroxy-17,17-trimethylene moiety were identied to be potent and selective EP2-receptor agonists.

$$R\alpha$$

$$R\alpha = CO_2H$$

$$Aa, b, c, f, h$$

$$CO_2H$$

$$Aa, b, c, f, h$$

Development of a Highly Selective EP2-receptor Agonist. Part 2: Identification of 16-Hydroxy-17,17-trimethylene 9β-chloro PGF Derivatives

Kousuke Tani, Atsushi Naganawa, Akiharu Ishida, Hiromu Egashira, Kenji Sagawa, Hiroyuki Harada, Mikio Ogawa, Takayuki Maruyama, Shuichi Ohuchida, Hisao Nakai, Kigen Kondo and Masaaki Toda

Minase Research Institute, Ono Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka 618-8585, Japan

9β-Chloro-16-hydroxy-17,17-trimethylene PGF analogues were identified to be potent and selective EP2-receptor agonists. Among them, **4aLy** exhibited an excellent profile both in biological activities and physiochemical properties.

New $2,N^6$ -Disubstituted Adenosines: Potent and Selective A_1 Adenosine Receptor Agonists

Sally A. Hutchinson,^a Stephen P. Baker^b and Peter J. Scammells^a

^aCentre for Chiral & Molecular Technologies, Deakin University, Geelong, VIC 3217, Australia

^bDepartment of Pharmacology, University of Florida College of Medicine, Box 100267, Gainesville, FL 32610, USA

A range of 2, N^6 -disustututed adenosines were synthesised and evaluated as adenosine receptor agonists. The combination of N^6 -norborn-2-yl and 2-halo substitution afforded potent and selective A_1 AR agonists.

Bioorg. Med. Chem. 10 (2002) 1115

Psammaplin A, a Chitinase Inhibitor Isolated from the Fijian Marine Sponge *Aplysinella Rhax*

Bioorg. Med. Chem. 10 (2002) 1123

J. N. Tabudravu, a V. G. H. Eijsink, G. W. Gooday, M. Jaspars, D. Komander, M. Legg, B. Synstad and D. M. F. van Aalten

^aMarine Natural Products Laboratory, Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, UK

^bDepartment of Molecular and Cell Biology, University of Aberdeen, Foresterhill AB25 2ZD, Scotland, UK

^cDepartment of Chemistry and Biotechnology, Agricultural University of Norway, As, Norway

^dWellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK

Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6ET, UK

SAR Directed Design and Synthesis of

Bioorg. Med. Chem. 10 (2002) 1129

Novel $\beta(1-4)$ -Glucosyltransferase Inhibitors and Their In Vitro Inhibition Studies

Asish K. Bhattacharya,^a Florian Stolz,^a Jürgen Kurzeck,^b Wolfgang Rüger^b and Richard R. Schmidt^a

^aFachbereich Chemie, Universität Konstanz, Fach M725, D-78457 Konstanz, Germany

^bArbeitsgruppe Molekulare Genetik, Fakultät für Biologie, Ruhr Universität, D-44780 Bochum, Germany

$$R^{1}$$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = H$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = H$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = H$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = H$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = H$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$
 $X = CH_{2}, R^{1} = R^{2} = R^{3} = 0$

A Facile One-Pot Synthesis of

4,5-Diaryl-2,2-dimethyl-3(2H)-furanones

Ki-Wha Lee, Young Hoon Choi, Yung Hyup Joo, Jin Kwan Kim, Song Seok Shin, Young Joo Byun, Yeonjoon Kim and Shin Chung

Drug Discovery, Pacific Corporation R&D Center, 314-1 Bora-ri, Kiheung-eup, Yongin-si, Kyounggi-do 449-729, South Korea

An efficient and practical one-pot synthesis of 4,5-diaryl-2,2-dimethyl-3(2H)-furanones has been achieved from 1,2-diarylethanones and 2-bromoisobutyryl cyanide in the presence of excess base.

Synthesis and In Vitro Muscarinic Activities of a Series of 1,3-Diazacycloalkyl Carboxaldehyde Oxime Derivatives

Ralf Plate, a Christan G.J.M. Jans, Marc J.M. Plaum and Thijs de Boerb

^aDepartment of Medicinal Chemistry, N.V. Organon, PO Box 20, 5340 BH Oss, The Netherlands ^bLead Discovery Unit, N.V. Organon, PO Box 20, 5340 BH Oss, The Netherlands

Insights into the Selective Inhibition of *Candida albicans* Secreted Aspartyl Protease: A Docking Analysis Study

S. K. Pranav Kumar and Vithal M. Kulkarni

Pharmaceutical Division, Department of Chemical Technology, University of Mumbai, Mumbai 400 019, India

Docking analysis performed on *Candida albicans* secreted aspartyl protease complexed with selective inhibitors (analogues of compound A-70450) has revealed the importance of hydrophobic and hydrogen bond interactions in mediating the inhibitor selectivity and potency. This analysis should be useful in the design of selective non-peptidic inhibitors of *C. albicans* aspartyl protease.

Bioorg. Med. Chem. 10 (2002) 1153

Compound A-70450

Phenolic Modification as an Approach to Improve the Pharmacology of the 3-Acyloxy-2-benzylpropyl Homovanillic Amides and Thioureas, a Promising Class of Vanilloid Receptor Agonists and Analgesics

Jeewoo Lee,^a Jiyoun Lee,^a Myung-Sim Kang,^a Kang-Pil Kim,^b Suk-Jae Chung,^b Peter M. Blumberg,^c Jung-Bum Yi^d and Young Ho Park^d

^aLaboratory of Medicinal Chemistry College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, South Korea ^bLaboratory of Pharmaceutics, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, South Korea ^cLaboratory of Cellular Carcinogenesis and Tumor Promotion, Division of Basic Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA ^dPacific R&D Center, 314-1, Bora-Ri, Kiheung-Eup, Yougin-Si, Kyounggi-Do 449-900, South Korea

QSAR Study on Toxicity to Aqueous Organisms Using the PI Index

Bioorg. Med. Chem. 10 (2002) 1181

Padmakar V. Khadikar,^a Anjani Phadnis^b and Anjali Shrivastava^c

^aResearch Division, Laxmi Fumigation and Pest Control Pvt. Ltd., 3, Khatipura, Indore 452 007, India

^bDepartment of Chemistry, Ranjeet Singh College, Khandwa Road, Indore 452 001, India

^cDepartment of Chemistry, Holkar Model and Autonomous College, Indore 452 001, India

Quantitative structure—toxicity relationship (QSTR) studies for a group of benzene derivatives have been made using recently introduced PI Padmakar—Ivan (PI) Index. Excellent results are obtained in tetra-parametric correlations upon the introduction of indicator parameters. The predictive potential of the proposed models is discussed on the basis of cross-validation parameters. The superiority of the PI index over other topological indices is discussed critically.

Syntheses of Ferulic Acid Derivatives and Their Suppressive Effects on Cyclooxygenase-2 Promoter Activity

Bioorg. Med. Chem. 10 (2002) 1189

Asao Hosoda,^a Yoshihiko Ozaki,^a Ayumi Kashiwada,^b Michihiro Mutoh,^c Keiji Wakabayashi,^c Kazuhiko Mizuno,^d Eisaku Nomura^a and Hisaji Taniguchi^a

*Azuhiko Mizuno, Eisaku Nomura and Hisaji Taniguchi Andri An

^bJapan Science and Technology Corporation, 4-1-8 Honmachi, Kawaguchi 332-0012, Japan

^cCancer Prevention Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

^dDepartment of Applied Chemistry, College of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan

Novel ferulic acid derivatives were synthesized, and their COX-2 promoter activity was evaluated.